Australian & New Zealand Journal of Statistics

SMALL AREA ESTIMATION USING SURVEY WEIGHTS WITH FUNCTIONAL MEASUREMENT ERROR IN THE COVARIATE

Journal Article

Summary

Nested error linear regression models using survey weights have been studied in small area estimation to obtain efficient model‐based and design‐consistent estimators of small area means. The covariates in these nested error linear regression models are not subject to measurement errors. In practical applications, however, there are many situations in which the covariates are subject to measurement errors. In this paper, we develop a nested error linear regression model with an area‐level covariate subject to functional measurement error. In particular, we propose a pseudo‐empirical Bayes (PEB) predictor to estimate small area means. This predictor borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. We also employ a jackknife method to estimate the mean squared prediction error (MSPE) of the PEB predictor. Finally, we report the results of a simulation study on the performance of our PEB predictor and associated jackknife MSPE estimator.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.