Australian & New Zealand Journal of Statistics

AFFINE‐EQUIVARIANT SPATIAL MEDIAN AND ITS USE IN THE MULTIVARIATE MULTI‐SAMPLE LOCATION PROBLEM

Journal Article

Summary

The classical spatial median is not affine‐equivariant, which often turns out to be an unfavourable property. In this paper, the asymptotic properties of an affine‐equivariant modification of the spatial median are investigated. It is shown that under some weak regularity conditions, the modified spatial median computed by means of the sample norming matrix is asymptotically equivalent to the one computed by means of the population norming matrix, which yields its asymptotic normality. A consistent estimate of the asymptotic covariance matrix of the modified spatial median is also presented. These results are implemented in a scheme, where the sample norm is determined by means of the sample Dümbgen scatter matrix. The results are utilized in the construction of affine‐invariant test statistics for testing the multi‐sample hypothesis of equality of location parameters. The performance of the proposed tests is demonstrated through a simulation study.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.