Australian & New Zealand Journal of Statistics


Journal Article


The Gini index and its generalizations have been used extensively for measuring inequality and poverty in the social sciences. Recently, interval estimation based on nonparametric statistics has been proposed in the literature, for example the naive bootstrap method, the iterated bootstrap method and the bootstrap method via a pivotal statistic. In this paper, we propose empirical likelihood methods to construct confidence intervals for the Gini index or the difference of two Gini indices. Simulation studies show that the proposed empirical likelihood method performs slightly worse than the bootstrap method based on a pivotal statistic in terms of coverage accuracy, but it requires less computation. However, the bootstrap calibration of the empirical likelihood method performs better than the bootstrap method based on a pivotal statistic.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.