Journal of Time Series Analysis


Early View

In this work, we propose a dynamic regression model based on the ConwayŮMaxwell–Poisson (CMP) distribution with time‐varying conditional mean depending on covariates and lagged observations. This new class of ConwayŮMaxwell–Poisson autoregressive moving average (CMP‐ARMA) models is suitable for the analysis of time series of counts. The CMP distribution is a two‐parameter generalization of the Poisson distribution that allows the modeling of underdispersed, equidispersed, and overdispersed data. Our main contribution is to combine this dispersion flexibility with the inclusion of lagged terms to model the conditional mean response, inducing an autocorrelation structure, usually relevant in time series. We present the conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis, and forecasting along with their asymptotic properties. In particular, we provide closed‐form expressions for the conditional score vector and conditional Fisher information matrix. We conduct a Monte Carlo experiment to evaluate the performance of the estimators in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.