Journal of Time Series Analysis

Tests for conditional heteroscedasticity of functional data

Early View

Functional data objects derived from high‐frequency financial data often exhibit volatility clustering. Versions of functional generalized autoregressive conditionally heteroscedastic (FGARCH) models have recently been proposed to describe such data, however so far basic diagnostic tests for these models are not available. We propose two portmanteau type tests to measure conditional heteroscedasticity in the squares of asset return curves. A complete asymptotic theory is provided for each test. We also show how such tests can be adapted and applied to model residuals to evaluate adequacy, and inform order selection, of FGARCH models. Simulation results show that both tests have good size and power to detect conditional heteroscedasticity and model mis‐specification in finite samples. In an application, the tests show that intra‐day asset return curves exhibit conditional heteroscedasticity. This conditional heteroscedasticity cannot be explained by the magnitude of inter‐daily returns alone, but it can be adequately modeled by an FGARCH(1,1) model.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.