Biometrical Journal

A generalized transition model for grouped longitudinal categorical data

Early View

  • Author(s): Idemauro A. R. Lara, Rafael A. Moral, Cesar A. Taconeli, Carolina Reigada, John Hinde
  • Article first published online: 06 Jul 2020
  • DOI: 10.1002/bimj.201900394
  • Read on Online Library
  • Subscribe to Journal

Abstract Transition models are an important framework that can be used to model longitudinal categorical data. They are particularly useful when the primary interest is in prediction. The available methods for this class of models are suitable for the cases in which responses are recorded individually over time. However, in many areas, it is common for categorical data to be recorded as groups, that is, different categories with a number of individuals in each. As motivation we consider a study in insect movement and another in pig behaviou. The first study was developed to understand the movement patterns of female adults of Diaphorina citri, a pest of citrus plantations. The second study investigated how hogs behaved under the influence of environmental enrichment. In both studies, the number of individuals in different response categories was observed over time. We propose a new framework for considering the time dependence in the linear predictor of a generalized logit transition model using a quantitative response, corresponding to the number of individuals in each category. We use maximum likelihood estimation and present the results of the fitted models under stationarity and non‐stationarity assumptions, and use recently proposed tests to assess non‐stationarity. We evaluated the performance of the proposed model using simulation studies under different scenarios, and concluded that our modeling framework represents a flexible alternative to analyze grouped longitudinal categorical data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.