WIREs Computational Statistics

A review of Bayesian group selection approaches for linear regression models

Early View

Abstract Grouping selection arises naturally in many statistical modeling problems. Several group selection methods have been proposed in the last two decades. In this paper, we review the Bayesian group selection approaches for linear regression models. We start from the Bayesian indicator approach and then move to the Bayesian group LASSO methods. In addition, we also consider the Bayesian methods for the sparse group selection that can be treated as an extension of the group selection. Finally, we mention some extensions of Bayesian group selection for the generalized linear models and the multiple response models. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Dimension Reduction Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory Statistical Models > Model Selection

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.