WIREs Computational Statistics

30 Years of space–time covariance functions

Early View

Abstract In this article, we provide a comprehensive review of space–time covariance functions. As for the spatial domain, we focus on either the d‐dimensional Euclidean space or on the unit d‐dimensional sphere. We start by providing background information about (spatial) covariance functions and their properties along with different types of covariance functions. While we focus primarily on Gaussian processes, many of the results are independent of the underlying distribution, as the covariance only depends on second‐moment relationships. We discuss properties of space–time covariance functions along with the relevant results associated with spectral representations. Special attention is given to the Gneiting class of covariance functions, which has been especially popular in space–time geostatistical modeling. We then discuss some techniques that are useful for constructing new classes of space–time covariance functions. Separate treatment is reserved for spectral models, as well as to what are termed models with special features. We also discuss the problem of estimation of parametric classes of space–time covariance functions. An outlook concludes the paper. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Multivariate Analysis

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.