International Statistical Review

Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models

Early View

Summary There has been considerable and controversial research over the past two decades into how successfully random effects misspecification in mixed models (i.e. assuming normality for the random effects when the true distribution is non‐normal) can be diagnosed and what its impacts are on estimation and inference. However, much of this research has focused on fixed effects inference in generalised linear mixed models. In this article, motivated by the increasing number of applications of mixed models where interest is on the variance components, we study the effects of random effects misspecification on random effects inference in linear mixed models, for which there is considerably less literature. Our findings are surprising and contrary to general belief: for point estimation, maximum likelihood estimation of the variance components under misspecification is consistent, although in finite samples, both the bias and mean squared error can be substantial. For inference, we show through theory and simulation that under misspecification, standard likelihood ratio tests of truly non‐zero variance components can suffer from severely inflated type I errors, and confidence intervals for the variance components can exhibit considerable under coverage. Furthermore, neither of these problems vanish asymptotically with increasing the number of clusters or cluster size. These results have major implications for random effects inference, especially if the true random effects distribution is heavier tailed than the normal. Fortunately, simple graphical and goodness‐of‐fit measures of the random effects predictions appear to have reasonable power at detecting misspecification. We apply linear mixed models to a survey of more than 4 000 high school students within 100 schools and analyse how mathematics achievement scores vary with student attributes and across different schools. The application demonstrates the sensitivity of mixed model inference to the true but unknown random effects distribution.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.