Quality and Reliability Engineering International

Software reliability prediction and management: A multiple change‐point model approach

Early View

Abstract It is commonly recognized that software development is highly unpredictable and software quality may not be easily enhanced after software product is finished. During the software development life cycle (SDLC), project managers have to solve many technical and management issues, such as high failure rate, cost over‐run, low quality, and late delivery. Consequently, in order to produce robust and reliable software product(s) on time and within budget, project managers and developers have to appropriately allocate limited time, manpower, development, and testing effort. In the past, the distribution of testing effort or manpower can typically be described by the Weibull or Rayleigh model. Practically, it should be noticed that development environments or methods could be changed due to some reasons. Thus, when we plan to perform software reliability modeling and prediction, these changes or variations occurring in the development process have to be taken into consideration. In this paper, we will study how to use the Parr‐curve model with multiple change‐points to depict the consumption of testing effort and how to perform further software reliability analysis. Some mathematical properties of proposed model will be given and discussed. The applicability and performance of our proposed model will be demonstrated and assessed through real software failure data. Experimental results are analyzed and compared with other existing models to show that our proposed model gives better predictions. Finally, an optimal software release policy based on cost‐reliability criteria is proposed and studied. The main purpose is aimed at minimizing the total cost of software development when a reliability objective is given.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.