Statistics in Medicine

Robust estimation of the causal effect of time‐varying neighborhood factors on health outcomes

Journal Article

The fundamental difficulty of establishing causal relationships between an exposure and an outcome in observational data involves disentangling causality from confounding factors. This problem underlies much of neighborhoods research, which abounds with studies that consider associations between neighborhood characteristics and health outcomes in longitudinal data. Such analyses are confounded by selection issues; individuals with above average health outcomes (or associated characteristics) may self‐select into advantaged neighborhoods. Techniques commonly used to assess causal inferences in observational longitudinal data, such as inverse probability of treatment weighting (IPTW), may be inappropriate in neighborhoods data due to unique characteristics of such data. We advance the IPTW toolkit by introducing a procedure based on a multivariate kernel density function which is more appropriate for neighborhoods data. The proposed weighting method is applied in conjunction with a marginal structural model. Our empirical analyses use longitudinal data from the Health and Retirement Study; our exposure of interest is an index of neighborhood socioeconomic status (NSES), and we examine its influence on cognitive function. Our findings illustrate the importance of the choice of method for IPTW—the comparison weighting methods provide poor balance across the set of covariates (which is not the case for our preferred procedure) and yield misleading results when applied in the outcomes models. The utility of the multivariate kernel is also validated via simulation. In addition, our findings emphasize the importance of IPTW—controlling for covariates within a regression without IPTW indicates that NSES affects cognition, whereas IPTW‐weighted models fail to show a statistically significant effect.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.