Statistics in Medicine

An empirical comparison of two novel transformation models

Journal Article

Continuous response variables are often transformed to meet modeling assumptions, but the choice of the transformation can be challenging. Two transformation models have recently been proposed: semiparametric cumulative probability models (CPMs) and parametric most likely transformation models (MLTs). Both approaches model the cumulative distribution function and require specifying a link function, which implicitly assumes that the responses follow a known distribution after some monotonic transformation. However, the two approaches estimate the transformation differently. With CPMs, an ordinal regression model is fit, which essentially treats each continuous response as a unique category and therefore nonparametrically estimates the transformation; CPMs are semiparametric linear transformation models. In contrast, with MLTs, the transformation is parameterized using flexible basis functions. Conditional expectations and quantiles are readily derived from both methods on the response variable's original scale. We compare the two methods with extensive simulations. We find that both methods generally have good performance with moderate and large sample sizes. MLTs slightly outperformed CPMs in small sample sizes under correct models. CPMs tended to be somewhat more robust to model misspecification and outcome rounding. Except in the simplest situations, both methods outperform basic transformation approaches commonly used in practice. We apply both methods to an HIV biomarker study.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.