Estimating treatment importance in multidrug‐resistant tuberculosis using Targeted Learning: An observational individual patient data network meta‐analysis

Early View

  • Author(s): Guanbo Wang, Mireille E. Schnitzer, Dick Menzies, Piret Viiklepp, Timothy H. Holtz, Andrea Benedetti
  • Article first published online: 08 Jan 2020
  • DOI: 10.1111/biom.13210
  • Read on Online Library
  • Subscribe to Journal

Abstract Persons with multidrug‐resistant tuberculosis (MDR‐TB) have a disease resulting from a strain of tuberculosis (TB) that does not respond to at least isoniazid and rifampicin, the two most effective anti‐TB drugs. MDR‐TB is always treated with multiple antimicrobial agents. Our data consist of individual patient data from 31 international observational studies with varying prescription practices, access to medications, and distributions of antibiotic resistance. In this study, we develop identifiability criteria for the estimation of a global treatment importance metric in the context where not all medications are observed in all studies. With stronger causal assumptions, this treatment importance metric can be interpreted as the effect of adding a medication to the existing treatments. We then use this metric to rank 15 observed antimicrobial agents in terms of their estimated add‐on value. Using the concept of transportability, we propose an implementation of targeted maximum likelihood estimation, a doubly robust and locally efficient plug‐in estimator, to estimate the treatment importance metric. A clustered sandwich estimator is adopted to compute variance estimates and produce confidence intervals. Simulation studies are conducted to assess the performance of our estimator, verify the double robustness property, and assess the appropriateness of the variance estimation approach.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.