Biometrics

Robustness of ANCOVA in randomized trials with unequal randomization

Early View

Abstract Randomized trials with continuous outcomes are often analyzed using analysis of covariance (ANCOVA), with adjustment for prognostic baseline covariates. The ANCOVA estimator of the treatment effect is consistent under arbitrary model misspecification. In an article recently published in the journal, Wang et al proved the model‐based variance estimator for the treatment effect is also consistent under outcome model misspecification, assuming the probability of randomization to each treatment is 1/2. In this reader reaction, we derive explicit expressions which show that when randomization is unequal, the model‐based variance estimator can be biased upwards or downwards. In contrast, robust sandwich variance estimators can provide asymptotically valid inferences under arbitrary misspecification, even when randomization probabilities are not equal.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.