Networks

An extended formulation for the 1‐wheel inequalities of the stable set polytope

Journal Article

Abstract The 1‐wheel inequalities for the stable set polytope were introduced by Cheng and Cunningham. In general, there is an exponential number of these inequalities. We present a new polynomial size extended formulation of the stable set relaxation that includes the odd cycle and 1‐wheel inequalities. This compact formulation allows one to polynomially optimize over a polyhedron instead of handling the separation problem for 1‐wheel inequalities by solving many shortest walk problems and relying on the ellipsoid method.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.