International Statistical Review

Likelihood, Replicability and Robbins' Confidence Sequences

Early View

Summary The widely claimed replicability crisis in science may lead to revised standards of significance. The customary frequentist confidence intervals, calibrated through hypothetical repetitions of the experiment that is supposed to have produced the data at hand, rely on a feeble concept of replicability. In particular, contradictory conclusions may be reached when a substantial enlargement of the study is undertaken. To redefine statistical confidence in such a way that inferential conclusions are non‐contradictory, with large enough probability, under enlargements of the sample, we give a new reading of a proposal dating back to the 60s, namely, Robbins' confidence sequences. Directly bounding the probability of reaching, in the future, conclusions that contradict the current ones, Robbins' confidence sequences ensure a clear‐cut form of replicability when inference is performed on accumulating data. Their main frequentist property is easy to understand and to prove. We show that Robbins' confidence sequences may be justified under various views of inference: they are likelihood‐based, can incorporate prior information and obey the strong likelihood principle. They are easy to compute, even when inference is on a parameter of interest, especially using a closed form approximation from normal asymptotic theory.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.