Biometrics

Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models

Early View

Abstract Accounting for time‐varying confounding when assessing the causal effects of time‐varying exposures on survival time is challenging. Standard survival methods that incorporate time‐varying confounders as covariates generally yield biased effect estimates. Estimators using weighting by inverse probability of exposure can be unstable when confounders are highly predictive of exposure or the exposure is continuous. Structural nested accelerated failure time models (AFTMs) require artificial recensoring, which can cause estimation difficulties. Here, we introduce the structural nested cumulative survival time model (SNCSTM). This model assumes that intervening to set exposure at time t to zero has an additive effect on the subsequent conditional hazard given exposure and confounder histories when all subsequent exposures have already been set to zero. We show how to fit it using standard software for generalized linear models and describe two more efficient, double robust, closed‐form estimators. All three estimators avoid the artificial recensoring of AFTMs and the instability of estimators that use weighting by the inverse probability of exposure. We examine the performance of our estimators using a simulation study and illustrate their use on data from the UK Cystic Fibrosis Registry. The SNCSTM is compared with a recently proposed structural nested cumulative failure time model, and several advantages of the former are identified.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.