Statistical Analysis and Data Mining

The spatially conscious machine learning model

Early View

Abstract Successfully predicting gentrification could have many social and commercial applications; however, real estate sales are difficult to predict because they belong to a chaotic system comprised of intrinsic and extrinsic characteristics, perceived value, and market speculation. Using New York City real estate as our subject, we combine modern techniques of data science and machine learning with traditional spatial analysis to create robust real estate prediction models for both classification and regression tasks. We compare several cutting edge machine learning algorithms across spatial, semispatial, and nonspatial feature engineering techniques, and we empirically show that spatially conscious machine learning models outperform nonspatial models when married with advanced prediction techniques such as Random Forests, generalized linear models, gradient boosting machines, and artificial neural networks.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.