Robust inference on the average treatment effect using the outcome highly adaptive lasso

Early View

Abstract Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.