Multinomial N‐mixture models for removal sampling

Early View

Abstract Multinomial N‐mixture models are commonly used to fit data from a removal sampling protocol. If the mixing distribution is negative binomial, the distribution of the counts does not appear to have been identified, and practitioners approximate the requisite likelihood by placing an upper bound on the embedded infinite sum. In this paper, the distribution which underpins the multinomial N‐mixture model with a negative binomial mixing distribution is shown to belong to the broad class of multivariate negative binomial distributions. Specifically, the likelihood can be expressed in closed form as the product of conditional and marginal likelihoods and the information matrix shown to be block diagonal. As a consequence, the nature of the maximum likelihood estimates of the unknown parameters and their attendant standard errors can be examined and tests of the hypothesis of the Poisson against the negative binomial mixing distribution formulated. In addition, appropriate multinomial N‐mixture models for data sets which include zero site totals can also be constructed. Two illustrative examples are provided.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.