Random Structures & Algorithms

Finding cliques using few probes

Early View

Consider algorithms with unbounded computation time that probe the entries of the adjacency matrix of an n vertex graph, and need to output a clique. We show that if the input graph is drawn at random from (and hence is likely to have a clique of size roughly ), then for every δ<2 and constant ℓ, there is an α<2 (that may depend on δ and ℓ) such that no algorithm that makes nδ probes in ℓ rounds is likely (over the choice of the random graph) to output a clique of size larger than .

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.