Quality and Reliability Engineering International

Engineering‐driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process

Journal Article

Abstract As a key aircraft component, hydraulic piston pumps must be developed with high reliability. However, collecting failure time data of such pumps for reliability analysis is a big challenge. To save testing time, performance degradation data obtained from degradation tests can be used for quick reliability estimation of hydraulic piston pumps. This paper proposes an engineering‐driven performance degradation analysis method considering the nature of mechanical wear of hydraulic piston pumps. First, the failure mechanism of a type of hydraulic piston pump is investigated. By taking into account the close relationship between the degradation rate and the failure mechanism, an inverse Gaussian (IG) process model with a variable rate is developed to describe the degradation behavior of the pump. Under this model, a Bayesian statistical method is developed for degradation data analysis. The corresponding procedure for model parameter estimation and reliability evaluation is also presented. The proposed degradation analysis method is illustrated using a real experimental data. The results show that the engineering‐driven approach is quite effective in evaluating the lifetime of the hydraulic piston pump and will improve the overall reliability of aircraft operation in the field.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.