Pharmaceutical Statistics

Controlling type I error in the reference‐scaled bioequivalence evaluation of highly variable drugs

Journal Article

Reference‐scaled average bioequivalence (RSABE) approaches for highly variable drugs are based on linearly scaling the bioequivalence limits according to the reference formulation within‐subject variability. RSABE methods have type I error control problems around the value where the limits change from constant to scaled. In all these methods, the probability of type I error has only one absolute maximum at this switching variability value. This allows adjusting the significance level to obtain statistically correct procedures (that is, those in which the probability of type I error remains below the nominal significance level), at the expense of some potential power loss. In this paper, we explore adjustments to the EMA and FDA regulatory RSABE approaches, and to a possible improvement of the original EMA method, designated as HoweEMA. The resulting adjusted methods are completely correct with respect to type I error probability. The power loss is generally small and tends to become irrelevant for moderately large (affordable in real studies) sample sizes.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.