Statistical Analysis and Data Mining: The ASA Data Science Journal

Forecasting basketball players' performance using sparse functional data

Early View

Abstract Statistics and analytic methods are becoming increasingly important in basketball. In particular, predicting players' performance using past observations is a considerable challenge. The purpose of this study is to forecast the future behavior of basketball players. The available data are sparse functional data, which are very common in sports. So far, however, no forecasting method designed for sparse functional data has been used in sports. A methodology based on two methods to handle sparse and irregular data, together with the analogous method and functional archetypoid analysis is proposed. Results in comparison with traditional methods show that our approach is competitive and additionally provides prediction intervals. The methodology can also be used in other sports when sparse longitudinal data are available.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.