Quality and Reliability Engineering International

Outliers detection using an iterative strategy for semi‐supervised learning

Early View

Abstract As a direct consequence of production systems' digitalization, high‐frequency and high‐dimensional data has become more easily available. In terms of data analysis, latent structures‐based methods are often employed when analyzing multivariate and complex data. However, these methods are designed for supervised learning problems when sufficient labeled data are available. Particularly for fast production rates, quality characteristics data tend to be scarcer than available process data generated through multiple sensors and automated data collection schemes. One way to overcome the problem of scarce outputs is to employ semi‐supervised learning methods, which use both labeled and unlabeled data. It has been shown that it is advantageous to use a semi‐supervised approach in case of labeled data and unlabeled data coming from the same distribution. In real applications, there is a chance that unlabeled data contain outliers or even a drift in the process, which will affect the performance of the semi‐supervised methods. The research question addressed in this work is how to detect outliers in the unlabeled data set using the scarce labeled data set. An iterative strategy is proposed using a combined Hotelling's T2 and Q statistics and applied using a semi‐supervised principal component regression (SS‐PCR) approach on both simulated and real data sets.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.