Journal of Applied Econometrics

Two applications of wild bootstrap methods to improve inference in cluster‐IV models

Early View

Summary Microeconomic data often have within‐cluster dependence, which affects standard error estimation and inference. When the number of clusters is small, asymptotic tests can be severely oversized. In the instrumental variables (IV) model, the potential presence of weak instruments further complicates hypothesis testing. We use wild bootstrap methods to improve inference in two empirical applications with these characteristics. Building from estimating equations and residual bootstraps, we identify variants robust to the presence of weak instruments and a small number of clusters. They reduce absolute size bias significantly and demonstrate that the wild bootstrap should join the standard toolkit in IV and cluster‐dependent models.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.