Australian & New Zealand Journal of Statistics

Climate regime shift detection with a trans‐dimensional, sequential Monte Carlo, variational Bayes method

Journal Article

Summary We present an application study which exemplifies a cutting edge statistical approach for detecting climate regime shifts. The algorithm uses Bayesian computational techniques that make time‐efficient analysis of large volumes of climate data possible. Output includes probabilistic estimates of the number and duration of regimes, the number and probability distribution of hidden states, and the probability of a regime shift in any year of the time series. Analysis of the Pacific Decadal Oscillation (PDO) index is provided as an example. Two states are detected: one is associated with positive values of the PDO and presents lower interannual variability, while the other corresponds to negative values of the PDO and greater variability. We compare this approach with existing alternatives from the literature and highlight the potential for ours to unlock features hidden in climate data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.