Applied Stochastic Models in Business and Industry

Radial basis neural tree model for improving waste recovery process in a paper industry

Early View

Abstract In this article, we propose a novel hybridization of regression trees (RTs) and radial basis function networks, namely, radial basis neural tree model, for waste recovery process (WRP) improvement in a paper industry. As a by‐product of the paper manufacturing process, a lot of waste along with valuable fibers and fillers come out from the paper machine. The WRP involves separating the unwanted materials from the valuable ones so that the recovered fibers and fillers can be further reused in the production process. This job is done by fiber‐filler recovery equipment (FFRE). The efficiency of FFRE depends on several crucial process parameters, and monitoring them is a difficult proposition. The proposed model can be useful to find the essential parameters from the set of available data and to perform prediction task to improve WRP efficiency. An idea of parameter optimization along with regularity conditions for the universal consistency of the proposed model is given. The proposed model has the advantages of easy interpretability and excellent performance when applied to the FFRE efficiency improvement problem. Improved waste recovery will help the industry to become environmentally friendly with less ecological damage apart from being cost‐effective.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.