International Statistical Review

Interpoint Distance Test of Homogeneity for Multivariate Mixture Models

Early View

Summary Finite mixtures offer a rich class of distributions for modelling of a variety of random phenomena in numerous fields of study. Using the sample interpoint distances (IPDs), we propose the IPD‐test statistic for testing the hypothesis of homogeneity of mixture of multivariate power series distribution or multivariate normal distribution. We derive the distribution of the IPDs that are drawn from a finite mixture of the multivariate power series distribution and multivariate normal distribution. Based on the empirical distribution of the IPDs, we construct a bootstrap test of homogeneity for other multivariate finite mixture models. The IPD test is applied to mixture models for matrix‐valued distributions and a test of homogeneity for Wishart mixture is presented. Numerical comparisons show that IPD test has accurate type I errors and is more powerful in most multivariate cases than the expectation–maximization (EM) test and modified likelihood ratio test.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.