International Statistical Review

Reliable Inference in Categorical Regression Analysis for Non‐randomly Coarsened Observations

Early View

  • Author(s): Julia Plass, Marco E.G.V. Cattaneo, Thomas Augustin, Georg Schollmeyer, Christian Heumann
  • Article first published online: 07 Jun 2019
  • DOI: 10.1111/insr.12329
  • Read on Online Library
  • Subscribe to Journal

Summary In most surveys, one is confronted with missing or, more generally, coarse data. Traditional methods dealing with these data require strong, untestable and often doubtful assumptions, for example, coarsening at random. But due to the resulting, potentially severe bias, there is a growing interest in approaches that only include tenable knowledge about the coarsening process, leading to imprecise but reliable results. In this spirit, we study regression analysis with a coarse categorical‐dependent variable and precisely observed categorical covariates. Our (profile) likelihood‐based approach can incorporate weak knowledge about the coarsening process and thus offers a synthesis of traditional methods and cautious strategies refraining from any coarsening assumptions. This also allows a discussion of the uncertainty about the coarsening process, besides sampling uncertainty and model uncertainty. Our procedure is illustrated with data of the panel study ‘Labour market and social security’ conducted by the Institute for Employment Research, whose questionnaire design produces coarse data.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.