WIREs Computational Statistics

High‐dimensional covariance estimation for Gaussian directed acyclic graph models with given order

Early View

Abstract The covariance matrix is a fundamental quantity that helps us understand the nature of relationships among variables in a multivariate data set. Estimating the covariance matrix can be challenging in modern applications where the number of variables is often larger than the number of samples. In this paper, we review methods which tackle this challenge by inducing sparsity in the Cholesky parameter of the inverse covariance matrix. This article is categorized under: Algorithms and Computational Methods > Numerical Methods Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.