Applied Stochastic Models in Business and Industry

Mover‐stayer model with covariate effects on stayer's probability and mover's transitions

Early View

Abstract A discrete time Markov chain assumes that the population is homogeneous, each individual in the population evolves according to the same transition matrix. In contrast, a discrete mover‐stayer (MS) model postulates a simple form of population heterogeneity; in each initial state, there is a proportion of individuals who never leave this state (stayers) and the complementary proportion of individuals who evolve according to a Markov chain (movers). The MS model was extended by specifying the stayer's probability to be a logistic function of an individual's covariates but leaving the same transition matrix for all movers. We further extend the MS model by allowing each mover to have her/his covariates dependent transition matrix. The model for a mover's transition matrix is related to the extant Markov chains mixture model with mixing on the speed of movement of Markov chains. The proposed model is estimated using the expectation‐maximization algorithm and illustrated with a large data set on car loans and the simulation.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.