Applied Stochastic Models in Business and Industry

Volatility forecasting using stochastic conditional range model with leverage effect

Early View

Abstract In this paper, we propose a stochastic conditional range model with leverage effect (henceforth SCRL) for volatility forecasting. A maximum likelihood method based on the particle filters is developed to estimate the parameters of the SCRL model. Simulation results show that the proposed methodology performs well. We apply the proposed model and methodology to four stock market indices, the Shanghai Stock Exchange Composite Index of China, the Hang Seng Index of Hong Kong, the Nikkei 225 Index of Japan, and the S&P 500 Index of US. Empirical results highlight the value of incorporating leverage effect into range modeling and forecasting. In particular, the results show that our SCRL model outperforms the conditional autoregressive range model, the conditional autoregressive range model with leverage effect, and the stochastic conditional range model in both in‐sample fit and out‐of‐sample forecast.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.