Biometrics

Fast Bayesian inference in large Gaussian graphical models

Early View

Abstract Despite major methodological developments, Bayesian inference in Gaussian graphical models remains challenging in high dimension due to the tremendous size of the model space. This article proposes a method to infer the marginal and conditional independence structures between variables by multiple testing, which bypasses the exploration of the model space. Specifically, we introduce closed‐form Bayes factors under the Gaussian conjugate model to evaluate the null hypotheses of marginal and conditional independence between variables. Their computation for all pairs of variables is shown to be extremely efficient, thereby allowing us to address large problems with thousands of nodes as required by modern applications. Moreover, we derive exact tail probabilities from the null distributions of the Bayes factors. These allow the use of any multiplicity correction procedure to control error rates for incorrect edge inclusion. We demonstrate the proposed approach on various simulated examples as well as on a large gene expression data set from The Cancer Genome Atlas.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.