Random Structures & Algorithms

On the threshold problem for Latin boxes

Early View

Let m ≤ n ≤ k. An m × n × k 0‐1 array is a Latin box if it contains exactly m n ones, and has at most one 1 in each line. As a special case, Latin boxes in which m = n = k are equivalent to Latin squares. Let be the distribution on m × n × k 0‐1 arrays where each entry is 1 with probability p, independently of the other entries. The threshold question for Latin squares asks when contains a Latin square with high probability. More generally, when does support a Latin box with high probability? Let ε > 0. We give an asymptotically tight answer to this question in the special cases where n = k and , and where n = m and . In both cases, the threshold probability is . This implies threshold results for Latin rectangles and proper edge‐colorings of Kn,n.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.