Scandinavian Journal of Statistics

Automated selection of post‐strata using a model‐assisted regression tree estimator

Journal Article

Abstract Despite having desirable properties, model‐assisted estimators are rarely used in anything but their simplest form to produce official statistics. This is due to the fact that the more complicated models are often ill suited to the available auxiliary data. Under a model‐assisted framework, we propose a regression tree estimator for a finite‐population total. Regression tree models are adept at handling the type of auxiliary data usually available in the sampling frame and provide a model that is easy to explain and justify. The estimator can be viewed as a post‐stratification estimator where the post‐strata are automatically selected by the recursive partitioning algorithm of the regression tree. We establish consistency of the regression tree estimator and a variance estimator, along with asymptotic normality of the regression tree estimator. We compare the performance of our estimator to other survey estimators using the United States Bureau of Labor Statistics Occupational Employment Statistics Survey data.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.