Scandinavian Journal of Statistics

Bayesian inference for stable Lévy–driven stochastic differential equations with high‐frequency data

Journal Article

Abstract In this paper, we consider parametric Bayesian inference for stochastic differential equations driven by a pure‐jump stable Lévy process, which is observed at high frequency. In most cases of practical interest, the likelihood function is not available; hence, we use a quasi‐likelihood and place an associated prior on the unknown parameters. It is shown under regularity conditions that there is a Bernstein–von Mises theorem associated to the posterior. We then develop a Markov chain Monte Carlo algorithm for Bayesian inference, and assisted with theoretical results, we show how to scale Metropolis–Hastings proposals when the frequency of the data grows, in order to prevent the acceptance ratio from going to zero in the large data limit. Our algorithm is presented on numerical examples that help verify our theoretical findings.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.