Scandinavian Journal of Statistics

Score estimation in the monotone single‐index model

Journal Article

Abstract We consider estimation in the single‐index model where the link function is monotone. For this model, a profile least‐squares estimator has been proposed to estimate the unknown link function and index. Although it is natural to propose this procedure, it is still unknown whether it produces index estimates that converge at the parametric rate. We show that this holds if we solve a score equation corresponding to this least‐squares problem. Using a Lagrangian formulation, we show how one can solve this score equation without any reparametrization. This makes it easy to solve the score equations in high dimensions. We also compare our method with the effective dimension reduction and the penalized least‐squares estimator methods, both available on CRAN as R packages, and compare with link‐free methods, where the covariates are elliptically symmetric.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.