Scandinavian Journal of Statistics

Hierarchical marginal models with latent uncertainty

Journal Article

Abstract In responding to a rating question, an individual may give answers either according to his/her knowledge/awareness or to his/her level of indecision/uncertainty, typically driven by a response style. As ignoring this dual behavior may lead to misleading results, we define a multivariate model for ordinal rating responses by introducing, for every item and every respondent, a binary latent variable that discriminates aware from uncertain responses. Some independence assumptions among latent and observable variables characterize the uncertain behavior and make the model easier to interpret. Uncertain responses are modeled by specifying probability distributions that can depict different response styles. A marginal parameterization allows a simple and direct interpretation of the parameters in terms of association among aware responses and their dependence on explanatory factors. The effectiveness of the proposed model is attested through an application to real data and supported by a Monte Carlo study.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.