Research Synthesis Methods

Meta‐analysis and Mendelian randomization: A review

Early View

Mendelian randomization (MR) uses genetic variants as instrumental variables to infer whether a risk factor causally affects a health outcome. Meta‐analysis has been used historically in MR to combine results from separate epidemiological studies, with each study using a small but select group of genetic variants. In recent years, it has been used to combine genome‐wide association study (GWAS) summary data for large numbers of genetic variants. Heterogeneity among the causal estimates obtained from multiple genetic variants points to a possible violation of the necessary instrumental variable assumptions. In this article, we provide a basic introduction to MR and the instrumental variable theory that it relies upon. We then describe how random effects models, meta‐regression, and robust regression are being used to test and adjust for heterogeneity in order to improve the rigor of the MR approach.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.