International Statistical Review

Semiparametric Regression Analysis of Panel Count Data: A Practical Review

Journal Article

Summary Panel count data arise in many applications when the event history of a recurrent event process is only examined at a sequence of discrete time points. In spite of the recent methodological developments, the availability of their software implementations has been rather limited. Focusing on a practical setting where the effects of some time‐independent covariates on the recurrent events are of primary interest, we review semiparametric regression modelling approaches for panel count data that have been implemented in R package spef. The methods are grouped into two categories depending on whether the examination times are associated with the recurrent event process after conditioning on covariates. The reviewed methods are illustrated with a subset of the data from a skin cancer clinical trial.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.