A Bayesian semiparametric approach to correlated ROC surfaces with stochastic order constraints

Early View

Abstract In application of diagnostic accuracy, it is possible that a priori information may exist regarding the test score distributions, either between different disease populations for a single test or between multiple correlated tests. Few have considered constrained diagnostic accuracy analysis when the true disease status is binary; almost none when the disease status is ordinal. Motivated by a study on diagnosing endometriosis, we propose an approach to estimating diagnostic accuracy measures that can incorporate different stochastic order constraints on the test scores when an ordinal true disease status is in consideration. We show that the Dirichlet process mixture provides a convenient framework to both flexibly model the test score distributions and embed the a priori ordering constraints. We also utilize the Dirichlet process mixture to model the correlation between multiple tests. In taking a Bayesian perspective to inference, we develop an efficient Markov chain Monte Carlo algorithm to sample from the posterior distribution and provide posterior estimates of the receiver operating characteristic surfaces and the associated summary measures. The proposed approach is evaluated with extensive simulation studies, and is demonstrated with an application to the endometriosis study.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.