Genetic Epidemiology

Bayesian meta‐analysis across genome‐wide association studies of diverse phenotypes

Early View

  • Author(s): Holly Trochet, Matti Pirinen, Gavin Band, Luke Jostins, Gilean McVean, Chris C. A. Spencer
  • Article first published online: 28 Mar 2019
  • DOI: 10.1002/gepi.22202
  • Read on Online Library
  • Subscribe to Journal

Abstract Genome‐wide association studies (GWAS) are a powerful tool for understanding the genetic basis of diseases and traits, but most studies have been conducted in isolation, with a focus on either a single or a set of closely related phenotypes. We describe MetABF, a simple Bayesian framework for performing integrative meta‐analysis across multiple GWAS using summary statistics. The approach is applicable across a wide range of study designs and can increase the power by 50% compared with standard frequentist tests when only a subset of studies have a true effect. We demonstrate its utility in a meta‐analysis of 20 diverse GWAS which were part of the Wellcome Trust Case Control Consortium 2. The novelty of the approach is its ability to explore, and assess the evidence for a range of possible true patterns of association across studies in a computationally efficient framework.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.