Quality and Reliability Engineering International

Failure mode and effects analysis by integrating Bayesian fuzzy assessment number and extended gray relational analysis‐technique for order preference by similarity to ideal solution method

Early View

Abstract Failure mode and effects analysis (FMEA) is a prospective risk assessment tool used to identify, assess, and eliminate potential failure modes (FMs) in various industries to improve security and reliability. However, the traditional FMEA method has been criticized for several shortcomings and even the improved FMEA methods based on predefined linguistic terms cannot meet the needs of FMEA team members' diversified opinion expressions. To solve these problems, a novel FMEA method is proposed by integrating Bayesian fuzzy assessment number (BFAN) and extended gray relational analysis‐technique for order preference by similarity to ideal solution (GRA‐TOPSIS) method. First, the BFANs are used to flexibly describe the risk evaluation results of the identified failure modes. Second, the Hausdorff distance between BFANs is calculated by using the probability density function (PDF). Finally, on the basis of the distance, the extended GRA‐TOPSIS method is applied to prioritize failure modes. A simulation study is presented to verify the effectiveness of the proposed approach in dealing with vague concepts and show its advantages over existing FMEA methods. Furthermore, a real case concerning the risk evaluation of aero‐engine turbine and compressor blades is provided to illustrate the practical application of the proposed method and particularly show the potential of using the BFANs in capturing FMEA team members' diverse opinions.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.