Mathematical Finance

Computational aspects of robust optimized certainty equivalents and option pricing

Early View

Abstract Accounting for model uncertainty in risk management and option pricing leads to infinite‐dimensional optimization problems that are both analytically and numerically intractable. In this article, we study when this hurdle can be overcome for the so‐called optimized certainty equivalent (OCE) risk measure—including the average value‐at‐risk as a special case. First, we focus on the case where the uncertainty is modeled by a nonlinear expectation that penalizes distributions that are “far” in terms of optimal‐transport distance (e.g. Wasserstein distance) from a given baseline distribution. It turns out that the computation of the robust OCE reduces to a finite‐dimensional problem, which in some cases can even be solved explicitly. This principle also applies to the shortfall risk measure as well as for the pricing of European options. Further, we derive convex dual representations of the robust OCE for measurable claims without any assumptions on the set of distributions. Finally, we give conditions on the latter set under which the robust average value‐at‐risk is a tail risk measure.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.