Statistics in Medicine

A shared‐parameter continuous‐time hidden Markov and survival model for longitudinal data with informative dropout

Journal Article

A shared‐parameter approach for jointly modeling longitudinal and survival data is proposed. With respect to available approaches, it allows for time‐varying random effects that affect both the longitudinal and the survival processes. The distribution of these random effects is modeled according to a continuous‐time hidden Markov chain so that transitions may occur at any time point. For maximum likelihood estimation, we propose an algorithm based on a discretization of time until censoring in an arbitrary number of time windows. The observed information matrix is used to obtain standard errors. We illustrate the approach by simulation, even with respect to the effect of the number of time windows on the precision of the estimates, and by an application to data about patients suffering from mildly dilated cardiomyopathy.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.