Statistics in Medicine

Estimating causal effects of treatment in RCTs with provider and subject noncompliance

Journal Article

Subject noncompliance is a common problem in the analysis of randomized clinical trials (RCTs). With cognitive behavioral interventions, the addition of provider noncompliance further complicates making causal inference. As a motivating example, we consider an RCT of a motivational interviewing (MI)‐based behavioral intervention for treating problem drug use. Treatment receipt depends on compliance of both a therapist (provider) and a patient (subject), where MI is received when the therapist adheres to the MI protocol and the patient actively participates in the intervention. However, therapists cannot be forced to follow protocol and patients cannot be forced to cooperate in an intervention. In this article, we (1) define a causal estimand of interest based on a principal stratification framework, the average causal effect of treatment among provider‐subject pairs that comply with assignment or ACE(cc); (2) explore possible assumptions that identify ACE(cc); (3) develop novel estimators of ACE(cc); (4) evaluate estimators' statistical properties via simulation; and (5) apply our proposed methods for estimating ACE(cc) to data from our motivating example.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.