Mathematische Nachrichten

Quantitative Bessaga–Pełczyński property and quantitative Rosenthal property

Early View

Abstract We prove that c0 and , where K is a dispersed compact Hausdorff space, enjoy a quantitative version of the Bessaga–Pełczyński property. We also prove that l1 possesses a quantitative version of the Pełczyński property. Finally, we show that has a quantitative version of the Rosenthal property for any finite measure μ.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.