Journal of the Royal Statistical Society: Series C (Applied Statistics)

A Bayesian model‐free approach to combination therapy phase I trials using censored time‐to‐toxicity data

Journal Article

Summary The product of independent beta probabilities escalation design for dual agent phase I dose escalation trials is a Bayesian model‐free approach for identifying multiple maximum tolerated dose combinations of novel combination therapies. Despite only being published in 2015, the design has been implemented in at least two oncology trials. However, these trials require patients to have completed follow‐up before clinicians can make dose escalation decisions. For trials of radiotherapy or advanced therapeutics, this may lead to impractically long trial durations due to late‐onset treatment‐related toxicities. We extend the product of independent probabilities escalation design to use censored time‐to‐event toxicity outcomes for making dose escalation decisions. We show via comprehensive simulation studies and sensitivity analyses that trial duration can be reduced by up to 35%, particularly when recruitment is faster than expected, without compromising on other operating characteristics.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.