Mathematical Logic Quarterly

Some transfinite natural sums

Journal Article


We study a transfinite iteration of the ordinal Hessenberg natural sum obtained by taking suprema at limit stages. We show that such an iterated natural sum differs from the more usual transfinite ordinal sum only for a finite number of iteration steps. The iterated natural sum of a sequence of ordinals can be obtained as a mixed sum (in an order‐theoretical sense) of the ordinals in the sequence; in fact, it is the largest mixed sum which satisfies a finiteness condition. We introduce other infinite natural sums which are invariant under permutations and show that all the sums under consideration coincide in the countable case.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.